
Red Hat Service Interconnect

Andrzej Kowalczyk
Associate Principal Solution Architect
Red Hat

Applications reside in a diverse mix of environments
Either On-Premises, in the Public Cloud, or at the Edge

Diverse Environments

3

OpenShift 3.x, OpenShift 4.x,

ARO, ROSA

Multiple versions of OpenShift

Old unixes, Mainframes

Legacy Systems

Variety of bare metal and VM

environments running existing

existing services

Bare metal and VMs

Kubernetes from hyperscalers

(Amazon EKS, Azure AKS,

Google GKE) Vanilla

Kubernetes

Other Kubernetes Offerings

APP CONNECTIVITY FOR THE HYBRID CLOUD

4

Drivers for Hybrid Cloud

Security & Compliance

Regional regulations, internal company
wide policy enforcement. Industry
specific rules. National supervisory
requirements.

IT Agility

Choose right cloud for your workload.
Keep options open. Better when
cross-cloud resilience applied.

Flexibility

Avoid vendor lock-in, deploy close to
development center. Backup and
contingency plan. Exit strategy. Optimize
limited budgets.

GeoLocation

Closer to business. Closer to Help-center
establishment. Map workload. Expand
geographical coverage.

Data Gravity

Data close to where it’s heavily used. Less
ingress/egress traffic. Data Lake access
offering choices.

Better Solution Offerings

Cloud vendors offer better service on
certain areas.

What is Service Interconnect ?

5

Interconnectivity delivers value
Combining different capabilities helps organizations deliver products and services.

What is Service Interconnect ?

6

Interconnections must be protected
Interconnections should not compromise the infrastructure or data

Connectivity Options/Choices
APP CONNECTIVITY FOR THE HYBRID CLOUD

7

Network isolation
Complexity (iptables and firewall rules)
Hub-n-spoke topology
Requires administrator privileges

Set up your own VPN network

Fine-grained network isolation
Low complexity
Developer controlled
Very low cost for additional resource

Overlay Network (VAN)

No network isolation
No connectivity to sites behind NAT or
Firewalls
Each IP is a co$t

Public IP Networks

Network isolation
Vendor lock in
Requires cluster privileges
Each connection is a co$t

Larger Provider Networks(AWS VPC)

8
Source:
Insert source data here
Insert source data here

APP CONNECTIVITY FOR THE HYBRID CLOUD

VAN address references a running

process or API endpoints, not a host

Addressing Network Portability

Routes application traffic based on the

VAN address, not the underlying IP

addresses

Characteristics of a Virtual Application Network (VAN)

Overlay Network

VAN is an application-layer(layer 7)

network that is overlaid on top of the

existing endorsed networks.

All of the inter-site connections in a

VAN are locked down using mutual TLS

(Transport Layer Security) with a

private, dedicated certificate authority

Security
Multicast/Anycast

VAN addresses are assumed to be

multi-access, where multiple

destinations can use the same address

Lightweight & Ephemeral

Easy to set up and easy to clean

network. Application networks and

service bindings can be transitory

APP CONNECTIVITY FOR THE HYBRID CLOUD

9

Application connectivity with Layer 7 VAN across platforms, clusters, and clouds

Application Focused
Integration

Individual Apps running on
virtually any platform can

make native TCP calls locally
to any other app running on
any other platform securely

without special VPNs.

Mutual TLS
Encryption

Interconnections use
Mutual TLS in order to
prevent unauthorized

interconnections.

Application Layer
Abstraction

Agnostic of the environment
and IP versions (such as IPv4
and IPv6) Enables portability
for both applications and its

associated networking.
Migrations can be easily

done without recreating the
networking.

Layer 7
Addressing

Instead of routing IP packets
between network endpoints,
Layer 7 application routers
route messages between

application addresses

Service Network Across Foot Prints

10

Service Network

Datacenter

Public

Edge / VMs

Router

Router Router

Service

Application

Service (Virtual)

Application

Service (Virtual)

Connection Direction
Data Flow Direction

Application

TCP over
AMQP
with TLS

TCP over
AMQP

with TLS

Portable Simple Protected Hybrid

Service Interconnect
Concepts and
Terminology

Concepts and Terminology

Understanding some key

concepts, components

and terminology of Red

Hat Service Interconnect

11

 Site

● RHSI network is composed of sites. A site is

a place where components of your

distributed application are running.

● Site can be a K8s namespace, virtual

machine, bare metal

● In this example, "site-1" and "site-2" must be

linked to form the network for Service A and

B to communicate.

12

Sites

Site “site-2”Site “site-1”

Service Network

Service A Service B

 Router (Data Plane)

● Key component for establishing connectivity

between sites. Installed in all the sites in the

network

● Communication across the network happens

between the routers

● Routers establish links with assigned peers

● Determine shortest path based on message

exchange

● Exchange target address updates

● Delivery pattern (anycast, multicast)

● Automatic recovery to failure by re-routing

● Dynamic and stateless

13

Router

Site “site-2”Site “site-1”

Service Network

Service A Service B

Router Router

 Controller (Control Plane)

● Collection of control loops to monitor K8s

resources and services, translates them into

router configuration

● Understands the network topology and

maintains router configuration

● Expose and communicate service availability

across the router network

● Responsible for Service Sync → A Protocol

to provide periodic updates on what services

are exposed across the network. Can be

turned off

● CA for generating tokens

● Certificate for router used on inter-route

and edge connections

14

Controller

Site “site-2”Site “site-1”

Service Network

Service A Service B

Router RouterController Controller

 Link

● Sites use links to form a dedicated network

for your application. These links are the basis

for site-to-site and service-to-service

communication.

● A link is a site-to-site communication

channel. Links serve as a transport for

application traffic such as connections and

requests

● Links are always secured using mutual TLS

authentication and encryption.

● Uni directional connectivity is enough to

establish a bidirectional link

15

Link

Site “site-2”Site “site-1”

Service Network

Service A Service B

Router RouterController Controller

Link

 Token

● Creating a link requires explicit permission

from the target site. This permission is

granted using tokens. A token contains a

URL for the target site and a secret key.

● Tokens can be restricted to a chosen

number of uses inside a limited time window.

By default, tokens allow only one use and

expire after 15 minutes.

● In this example, site "site-1" wishes to allow

"site-2" to create a link. Site "site-1" creates a

token. The owner of "site-1" gives the token

to the owner of "site-2". The owner of

"site-2" then uses the token to create the

link.

16

Token

Site “site-2”Site “site-1”

1. Create token

2. Transfer token

3. Create link

How to in 4 easy steps

How to in 4 easy steps

17

1 2 3 4

How to in 4 easy steps

18

Frontend and the backend spread Across Different Environments

frontend backend

Public Cluster Private Cluster / On-prem

How to in 4 easy steps

19

Initialize the Routers

frontend backend

Public Cluster Private Cluster / On-prem

$ skupper init $ skupper init

How to in 4 easy steps

20

Create a secure token

frontend backend

Public Cluster Private Cluster / On-prem

$ skupper token create secret.token

How to in 4 easy steps

21

Transfer the token

frontend backend

Public Cluster Private Cluster / On-prem

$ skupper link create secret.token

and link the sites using the token

Link

How to in 4 easy steps

22

Expose only the Required Services

frontend backend

Public Cluster Private Cluster / On-prem

$ skupper expose service backend

Link

backend

Simplicity

Simplicity

What makes Red Hat

Service Interconnect

unique is the ability to

simplify application

connectivity across Red

Hat or non-Red Hat

environments and

platforms.

23

An application-layer solution can significantly reduce complexity and coordination delay

APP CONNECTIVITY FOR THE HYBRID CLOUD

24 Source:
Insert source data here
Insert source data here
Insert source data here

You don’t need new firewall rules, and you

don’t need your infra team to install a

gateway. If you can connect (either way),

you can create a service network.

No admin privilegesNo network changes

It requires no elevated privileges to set

up. Operates with the same privileges as

your application.

No code changes

You don’t have to change your

application code. Services communicate

transparently as though they were

deployed together in one location.

Eliminates Time Taking Complex Configurations

Simple CLI Based Configuration
CLI Command Structure

APP CONNECTIVITY FOR THE HYBRID CLOUD

25 Source:
Insert source data here
Insert source data here
Insert source data here

Control the visibility of

individual services in the

network

Service Management

Manage the connections and

link definitions

Link Management

Create Secure Tokens for

Establishing mTLS

connections

Token Management

Manage the lifecycle of

Skupper installations and

components

Site Lifecycle

Console
Visualize your connections

APP CONNECTIVITY FOR THE HYBRID CLOUD

26 Source:
Insert source data here
Insert source data here
Insert source data here

● Topology: Graphical representation of all

the connections

● Components: Services that are exposed on

the service network, both local and remote.

● Sites: Application Interconnect installations

on the current service network.

● Throughput Bytes: Charts providing traffic

related information

Portable Simple Protected Hybrid

Portability

27

Portability
Applications using Service

Interconnect are highly

portable from a

networking perspective,

offering great freedom of

operational efficiency and

migration.

Portable Simple Protected Hybrid

Portability

28

Some elements in software are still not portable
Portability allows to decouple elements in software

Containers
turned computing

PORTABLE
Containers enable to move
applications from different
environments effortlessly

Object Storage
turned storage
PORTABLE

Object Storage enable to move data
stored from one location to another

easily

Networking is still
NOT PORTABLE

Networking is still the only element in
software that is still immutable. It
requires a new configuration for a

new environment

Portable Simple Protected Hybrid

Portability

29

Service Interconnect changes that
Interconnections follows your application to different environments and platforms

Containers turned
computing

PORTABLE
Containers enable to move
applications from different
environments effortlessly

Object Storage turned
storage

PORTABLE
Object Storage enable to move data
stored from one location to another

easily

Networking is now
PORTABLE

Because it operates on Layer 7, it
abstracts the underlying networking

and helps to re-establish
interconnections in different

environments

Portable Simple Protected Hybrid

Hybrid

Hybrid

Service Interconnect

makes hybrid cloud

strategies easier to

implement by allowing

customers’ development

teams to easily, rapidly and

safely interconnect any

Kubernetes cluster, any

public cloud, any virtual

machine or any bare-metal

host.

30

Portable Simple Protected Hybrid

Hybrid interconnections

Hybrid

31

Linking different applications and services across different environments

Virtual
Machine Host gateway

Legacy

Bare-Metal
HostHost

Database

gateway

router

controller

Namespace
Service

Public
Cloud

router

controllerNamespace

Service

Portable Simple Protected Hybrid

Hybrid

32

Services that are a part of the network and not directly connected can access each other if needed

Virtual
Machine Host gateway

Legacy

Bare-Metal
HostHost

Database

gateway

router

controller

Namespace
Service

Public
Cloud

router

controllerNamespace

Service

Indirect connections amongst services

Portable Simple Protected Hybrid

Hybrid

33

In case of a Router outage, alternate path is found

Virtual
Machine Host gateway

Legacy

Bare-Metal
HostHost

Database

gateway

router

controller

Namespace
Service

Public
Cloud

router

controllerNamespace

Service

High Availability

Portable Simple Protected Hybrid

Hybrid

34

Interconnections find the optimal path to reach a destination

Virtual
Machine Host gateway

Legacy

Bare-Metal
HostHost

Database

gateway

router

controller

Namespace
Service

Public
Cloud

router

controllerNamespace

Service

Cost- and locality-aware traffic forwarding

$$$$$

$$

$$

$$$$$

Key Use Cases

Hybrid

Service Interconnect

makes hybrid cloud

strategies easier to

implement by allowing

customers’ development

teams to easily, rapidly and

safely interconnect

services across any

Kubernetes cluster, any

public cloud, any virtual

machine or any bare-metal

host.

35

Use Case: Integrate OpenShift with Traditional Applications & Infrastructure

36

Source Namespace

Service A

Service B

Service C

Router

Service
Controller

HTTPS (mTLS)

Note: This is a logical network flow. All RHSI network flows ride on top of already endorsed network flows and
ingress/egress the cluster via routes on the RHSI Router.

Virtual
Machine

RHSI
Gateway

SQL
Server

Service Interconnect Gateway
enables “locationless”

integration with traditional
applications

37

Private Cloud

 Namespace 1

Use Case: High Availability of Services
Across Multiple Clusters

Service Router

Public Cloud 1

 Namespace 1

ServiceRouter

Public Cloud 2

 Namespace 1

Service Router

38

Private Cloud

 Namespace 1

Replica Set:
Primary

Use Case: Distributed Data Replication

DB Service
0 Router

Public Cloud 1

 Namespace 1

DB
Service

1Router

Public Cloud 2

 Namespace 1

DB
Service

2Router

Replica Set:
Secondary

Replica Set:
Secondary

mTLS

mTLS

mTLS

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you

